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Abstract 

The purpose of this paper is to extend into phase space the cellular description introduced 
by Bohm et al. (1970) and to show how this may help to give an understanding of the 
current algebra approach to elementary particle phenomena. We investigate this cellular 
structure in phase space in some detail and show how certain features of the structure 
may be described in terms of the mathematics of fibre bundle theory. The frame bundle 
is discussed and compared with the Yang-Mills theory. As a result of this discussion we 
are able to introduce generalised currents which are related to the duals of the curvature 
forms, and these are shown to span the Lie algebra of a sub-group of the structure group 
of the frame bundle. We then discuss the implications of these results in terms of our cell 
structure. By assuming that the de Rahm cohomology, defined by the curvature forms 
and their duals, reflect a cohomology on the integers defined on the original cell structure, 
we show that the currents and 'curvature' can be given a meaning in terms of a discrete 
structure. In this case the currents only span a Lie algebra in some suitable limit, implying 
that a description using Lie algebras is only an approximation. 

1. Introduction 

In  a recent paper (Bohm et al., 1970) we have suggested that it is possible 
to find new descriptions in physics which have many  features similar to 
those contained in quan tum theory (e.g. discreteness, superposition, 
potentialities, etc.) without  using the Hilbert  space formalism and its 
probabi l i ty  interpretat ion.  To achieve this, we have suggested that  the 
classical no t ion  of an object in itself is not  to be taken as a basic descriptive 
term. This does not  deny its relevance in, for example, the kinetic theory, 
bu t  here it is to be regarded as an abstract ion from something more basic. 

F r o m  a careful considerat ion of general questions concerning our 
primitive perceptions, and from a careful considerat ion of the implicit 
not ions contained in quan tum theory (in particular,  the consequences of 
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the indivisibility of the quantum of action), we have suggested that primary 
relevance should be given to activity and wholeness in the sense of undivided 
movement. In terms of these notions, the apparatus itself is to be regarded 
as being an aspect of the movement so that there is no longer a sharp 
distinction between the apparatus and the observed phenomena. Each 
experimental arrangement potentiates a content with which physics is 
concerned in an essential way. 

When primary relevance is given to activity and wholeness, the traditional 
mode of description using particles and fields together with the space-time 
continuum can no longer be regarded as basic. We have already suggested 
(Hiley, 1968; Bohm et al., 1970) that the appropriate mathematical descrip- 
tion should use the descriptive terms of homology and cohomology theory 
(e.g. simplexes, complexes, chains, cochains, etc.) that is, the basic descrip- 
tion should be cellular. 

In this paper we wish to relate this cellular description to some attempts 
that have recently been made to understand elementary particle phenomena. 
In particular we wish to discuss some aspects of the bilocal theory proposed 
by Yukawa (1965) and extended by Takabayasi (1965, 1970). Their theory 
can be regarded as imposing a cellular structure on space-time. We point 
out that such a structure is arbitrary and not supported by any direct 
experimental evidence. On the other hand, as we have pointed out elsewhere 
(see Bohm, 1969; Hiley, 1968), quantum phenomena call for a description 
based on a cell structure in phase space and we propose to investigate some 
aspects of this structure. 

In its most general form our theory replaces phase space by an abstract 
simplicial complex, together with a cohomology with values in the integers, 
thus giving a discrete structural description. However, in order to make 
rapid contact with present theories, we assume our simplexes are homeo- 
re.orphic to Euclidean simplexes. For these simplexes we show how certain 
features of the complex can be described approximately by means of fibre 
bundle theory using, in particular, the frame bundle. This mathematical 
theory contains formal features that are similar to those used in the Yang- 
Mills theory (see Utiyama, 1956) and this enables us to give a structural 
meaning to gauge invariance and current algebras. 

Although the similarity between the frame bundle theory and the Yang- 
Mills theory has already been noted by others (e.g. Lubkin, 1963; Herman, 
1966) our approach is different in several essential ways. We do not start 
with a Lagrangian field theory which is made gauge invariant. As a result we 
do not regard the description as one in which fields are considered to be in 
interaction. To us, analysis into parts is not relevant and the interaction is 
to be regarded as inseparable from the overall structure, much in the same 
vein as in general relativity where the forces are described by the geometry. 
However, our structure is not a continuum metric geometry, but a cellular 
structure which is basically discrete. The frames that are used in the frame 
bundle give an approximate description of certain features of this structure. 
For example, gauge invariance implies that it is the relative orientation and 
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not the absolute orientation of the frames that is an important feature of 
the structure. 

The form in which we develop the mathematics is also different from the 
earlier theories. We use differential forms throughout and interpret these 
forms as defining a de Rahm cohomology. We then assume that this de 
Rahm cohomology reflects a cohomology with values in the integers that 
can be defined on the basic simplicial complex. The relevant formulae used 
to describe the frame bundle can then be given a meaning in terms of the 
discrete structure. 

In Section 2 we show how the work of Yukawa and Takabayasi enables 
us to use fibre bundle theory to describe certain features of the cell structure. 
In Section 3 we briefly review some of the pertinent features of fibre bundle 
theory and develop the relevant formulae required to discuss the formal 
relationship between the bundle theory and the Yang-Mills theory. This 
relationship is then discussed in Section 4. In this section we also indicate 
why we consider the bundle theory to be more appropriate from the point 
of view that we are adopting. In Section 5 we use this theory to give a 
structural meaning to the currents and show that the current commutation 
relations emerge as a natural consequence of the bundle description. 
Finally, we point out that when the full consequences of the cell structure 
are taken into consideration, the current commutation relations no longer 
span a Lie algebra, indicating that a description in terms of a Lie algebra 
is only an approximation. 

2. Cellular Descriptions and the Multilocal Model 

Cellular descriptions have, of course, already been proposed for various 
reasons (Ishiwara, 1915; Wheeler, 1963) but we wish to make particular 
reference to the work of Yukawa (1965) and Takabayasi (1965, 1970) which 
contain certain basic features pertinent to our discussion. Yukawa's 
motivation for introducing a cellular description stems from the divergence 
difficulties in quantum field theory which he attributes to the neglect of the 
finite size of the elementary particles. If the particles do have a finite size, 
and experimental scattering data clearly indicate that they appear to behave 
like extended structures in space-time (Olsen et al., 1961), then one way of 
discussing this structure is to assume that the free-fields used to describe 
the particles can only be specified over finite regions in space-time. (This, 
in itself, is different from the usual method which uses local fields and form 
factors.) 

If Yukawa's theory is not to reduce to a local field theory under some 
transformation then we must assume that the domains can never be reduced 
to a point. Thus, it is necessary to impose some restriction on the size and 
the shape of the domains. The simplest idea that Yukawa considered was 
to assume that these domains were spherical with a radius lo, that is, a 
fundamental length is introduced. This feature of the bilocal theory is 
unsatisfactory because the shape and the size of the domains are arbitrarily 
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imposed and there is, as yet, no evidence to support the notions of a funda- 
mental length in space-time. 

As indicated earlier, instead of considering a cellular structure in a 
space-time manifold, we consider such a structure in a phase space manifold 
(i.e. the kinematic properties rather than the static properties are con- 
sidered). In this case it is known from quantum theory that phase space has 
a natural cellular structure, the volume of the cells being determined by 
Planck's constant. Furthermore, it has already been pointed out (Bohm, 
1969; Hiley, 1968) that the shape of the cells depend on the experimental 
conditions, thus showing that neither the shape nor the size of the cells 
are arbitrarily imposed from outside. In fact the overall cell structure is 
inseparable from the experimental conditions which lead to the kind of 
wholeness suggested by quantum theory. Thus we argue that if a cellular 
description is to be regarded as basic, then this structure arises naturally 
in the phase space rather than in space-time. In other words, when the ceils 
(or simplexes) are homeomorphic to Euclidean cells (or simplexes), the 
appropriate manifold will be a phase space manifold rather than a sl~ace- 
time manifold. 

We must next question how the concept of a particle is to enter the 
description. In the Yukawa theory, the particle is an object in itself which 
'jumps' from cell to cell. This idea is, however, not consistent with the 
notions we are discussing here. For, in our point of view, the particle must 
be abstracted from the invariant features of the whole movement~ and 
cannot be thought of as being an independently existing entity. Indeed, the 
cells must be used to describe the invariant features of the movement and 
these invariant features must be combined to give an explanation of the 
properties of 'classical particles'. (We will see that the invariant features 
can be regarded as 'currents'.) 

In order to show how such a connection can be made, we will outline 
the main steps used in the mathematical description. As we have already 
pointed out, we are assuming that the simplexes are homeomorphic to 
Euclidean simplexes. This approximation is equivalent to covering a 
manifold with a simplicial complex, and we want to show how the manifold 
can be used to take into account the cell structure. To do this we, in fact, 
make use of  the ideas proposed by Yukawa (1965) and generalised by 
Takabayasi  (1965, 1970). In its simplest form, the spherical cells could be 
specified by a point x , ,  taken to be the centre of the sphere, together with 
a radius vector r ". In the modified, more general version, the cells can 
undergo linear deformation and to describe this deformation, one needs a 
mean position x ~', together with a frame X~,. I f  the cells are embedded in a 
four-dimensional manifold, then a four-dimensional frame must be used. 
I f  more complicated deformations are necessary, then linearity can be 
preserved by considering a frame with higher dimensionality..~ Trans- 

t The whole movement is called the holomovement in Bohm et  al. (1970). 
:~ A similar approach is used in the fluid droplet model in which higher multipole 

moments are treated as linear. 
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formations among the sets of equivalent frames of a given dimensionality 
will, evidently, be through the general linear group, or one of its sub- 
groups. These sub-groups will arise if there is a greater symmetry in the 
cells. Hence the group, which we will call the structure group, describes the 
symmetry properties of the cells. 

Thus we have argued that if a cell structure can be embedded in a mani- 
fold, the cell description can be replaced by a frame description; the sym- 
metry properties of the cells can be described by a set of frames related to 
each other at each point of the phase space through some suitable group. 
However, in using the manifold description, one of the important features 
of quantum theory, namely, discreteness has already been lost and therefore 
it is not surprising that the resulting description will contain features that 
are similar to unquantised classical theories. 

Furthermore, in the approximation in which the cell description is 
replaced by the frame description, it is apparent that the absolute size and 
absolute 'orientation' of the cells is not relevant. The frames themselves 
refer only to relative size and to relative 'orientation' of neighbouring 
cells. 

We thus begin to see emerging a natural meaning to gauge invariance 
which is similar to the original idea introduced by Weyl (1922). In order to 
show this more clearly and to relate it to the conventional meaning (i.e. 
invariance under arbitrary changes in the phase of the wave function) we 
first call attention to a certain well-known mathematical structure, com- 
prising a manifold, a set of frames at each point of the manifold, and a 
structure group. This is, in fact, called a frame bundle which is, in turn, 
a particular example of a more general mathematical structure called a 
principal fibre bundle. Although this structure is well known in mathe- 
matics, it has not been used much in physics, and only recently has it 
become important in the theory of group representations (see Herman, 
1966). Thus its power for discussing basic geometric and topological 
questions in physics has hardly been appreciated (but see Mackey, 1963; 
Mayer, 1966). 

We note further that there is a very close connection between the fibre 
bundle and the Yang-Mills theory. This connection has already been 
briefly referred to by Herman (1966). But it was Lubkin (1963) who first 
showed the connection explicitly when he attempted to give a geometric 
meaning to gauge transformations. However, he does not use the full 
implications of the fibre bundle theory and stayed close to conventional 
field theory without attempting to change any basic concepts. On the other 
hand, to us the frame bundle is a way to obtain an approximate description 
of a cell structure. This approximation will be particularly important in 
describing features of the structure which depend strongly on the relative 
'orientation' of cells. The cell structure is inseparable from the apparatus 
and, hence, the relative 'orientation' of the cells is not arbitrary. The way 
the cells fit together is the description we require and the fibre bundle is one 
way to obtain an approximate description of this structure. 
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3.1. Frame Bundles 

As the theory of fibre bundles is unfamiliar to most physicists, we would 
like to present a somewhat simplified and intuitive account of  the theory 
confining our discussion to those aspects that will be of  direct relevance to 
this paper. No attempt will be made to discuss the formal properties of  the 
structure in any detail as adequate discussions already exist elsewhere. 
(e.g. Bishop & Crittenden, 1964.) 

Consider a set of  frames at each point m of an n-dimensional manifold M, 
which we will call the base space. By frame, we mean a set (e~,...e,) of  
linearly independent tangent vectors. These frames can be thought of  as 
forming the basis of  a vector space, F (called the fibre), so that each point 
on M has a fibre associated with it. We can generalise further by considering 
a super-space, P formed from the union of the fibres and the manifold, M. 
We call this new space the bundle space. It  is the manifold which is locally 
of  the form M x F, i.e. the local structure is 'trivial'. 

Each point p E P is associated with a unique point m on M, that is, we 
can introduce a mapping 7r :P-+ M such that 7r(p)= m. The inverse of  
this mapping, rr-l(m), picks out all points on the same fibre, F, i.e. ~--l(m) 
F. Thus, in terms of the frame bundle, ~r associates with the origin of  each 
frame a point m E M and 7r-l(m), gives the set of  frames at m. 

As we have already indicated, the set of  frames at a point m are related 
through a group G which, in this particular case, is GL(n, R) or one of its 
subgroups. Since the frames are regarded as the bases of  the vector space F, 
we see that G acts on Fand ,  since Fis  in P, G also acts on P in the following 
manner. I f  p e F, then every other p" on the same fibre is given by p '  = pg 
with g ~ G. This group is called the structure group. In the case of  the frame 
bundle, we can write p = (m, e) and p '  = (m, f) so that 

(m, f) = (m, eg) (3.1) 

In the structure developed thus far there is no way of introducing the 
idea of a 'geometric object', i.e. what physicists call tensors. Normally 
these are introduced in terms of a coordinate system, but so far we have 
not introduced coordinates into the fibre bundle. In fact, the power of  the 
bundle theory is that the structures can be described without the need for 
a coordinate representation. 

Now to see how tensors are to be introduced, first consider the intrinsic 
definition of a vector, V, written as the product v ~e~ (summation over 
repeated indices). Under the action of g ~ G, the set {e~} transform to the 
right by equation (3.1) and so, if V is to remain unchanged under each 
g e G (i.e. it is to be a 'geometric object'), the set {v ~} must be transformed 
on the left by g-1. 

To describe this action, in general, we introduce a vector space ~/" 
such that g:P•  is given by (p,v)g=(pg, g-lv). Then 
B = (P x "t/')/G is the bundle space of the associated fibre bundle and we 
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introduce the mapping ~-': B -+ M defined by 7r'((p, v) G) = rr(p). Thus the 
tangent bundle can be identified with the space of all pairs (m, t), where t 
is a tangent vector to M, so that 

[(m, e l , . . ,  e,), (v' . . . .  v")] Gl(n, R) --> (m, v'  e,) 

The tangent bundle is a special case of a vector bundle. This name is used 
when the structure group is a subgroup of the general linear group. The 
vector bundle can in turn be generalised to a tensor bundle in order to deal 
with higher-rank tensors by regarding "//" as a direct product of vector 
spaces and their duals. It can also be generalised to handle differential 
forms, in which case it is known as a Grassmann bundle. We will, in fact, 
be concerned with such a bundle. 

Although the description we have been discussing so far is coordinate 
free, we wish to use a local coordinate description since this enables the 
formal connection with Yang-Mills fields to become more transparent. 
By using local coordinates, we will see that the structure group is defined by 
the allowable coordinate transformations on the base manifold. In this way 
we generate a bundle known as a coordinate bundle. 

If(x1. . .  x") are the local coordinates of point m in M, the local coordinates 
in P are (x ~, Xj ~) where the n z functions X~. ~ define the n vectors of the frame 
e at x ~, i.e. 

0 
eg = Xj ~ Ox i 

I fg  e G with matrix representation gj.f then a new frame at m is given by 
(3.1) with 

0 
fJ = )?J' ax' 

That is, in terms of local coordinates equation (3.1) becomes 

s  = X / g k  ~ (3.2) 

Let us now look at equation (3.2) in another way. Let M be covered by a 
set of overlapping coordinate neighbourhoods and consider, in particular, 
two coordinate neighbourhoods U~, and UO, such that U~ Cl Ug ~ 0. At 
any point m ~ U~ O Ur the coordinates of a point on the fibre is, say, 
X ~ j  in terms of the local coordinates U~, while in terms of the local 
coordinates UO, the same point on the fibre is X~/3)j. Thus equation (3.2) 
becomes 

i _ ~ j (No summation over a and fi) (3.3) X(~)I, - X(~o~ g(o, ' ~)k 

which can be regarded as a 'coordinate transformation' on the fibre. It is 
now possible to introduce n linearly independent 1-forms 0~) such that 
when U~ f3 UI~ ~ 0 

0~) = g~t~)J 0[~) (3.4) 
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We can now form a global 1-form on the bundle space P 

col i i _ ~ l (3.5) 

This global 1-form is defined at a point m of the manifold M, and we wish 
to find how the global 1-form changes at the point m + d m .  To describe this 
change we introduce the displacement operator d which is called the exterior 
covariant derivative. Like the exterior derivative this is an anti-derivation 
so that we have 

d w  i = dO i X j  - OJ d X j  i (3.5a) 

Since the frames are a set of vectors, comparison of vectors at different 
points on a manifold is traditionally achieved through Levi-Civita parallel- 
ism, i.e. we write 

d X j  i =  d X j i  + l"imkdxm X j  k = ~kV ~ o~ (3.6) 

where the P ' s  are the usual Christoffel symbols while oJk ~ is the connection 
1-form. In terms of the coordinate system (x i, ~i) we have 

~ok ~ = I'imk d x  m (3.7) 

As far as this paper is concerned it is sufficient to write 

dO ~ = dO j (3.8) 

As we will explain later, this is equivalent to assuming the existence of a 
fundamental horizontal 1-form sometimes called the solder 1-form (Bishop 
& Crittenden, 1964). 

If  we now substitute equations (3.8) and (3.6) into (3.5) we find 

dco' = (dO i - O k ^ wk  J) X j '  (3.9) 

The term in the brackets on the right-hand side of equation (3.9) is the usual 
expression for the torsion form. 

To obtain the usual expression for the curvature form we write 

d ( d X / )  = g-2~' X f '  (3.10) 

and it is not difficult to show that 

~j t  = d%i _ ~of ^ cok i (3.11) 

Instead of introducing the connection 1-form o~j, we can introduce a 
left-invariant (under g ~ G) 1-form, yji, defined by 

dXj' = 7k' Xj k (3.12) 

By using equations (3.6), (3.10), and (3.12), we have 

d ~ j i  + ~/jk A ~/k i = y j k  ff2~n Xn  I = ~'2ji (3.13) 

where 
Y~ X~ i = ~/  
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Now in the fibre bundle theory the Ambrose-Singer theorem (1953) 
proves that the curvature form spans the Lie algebra of the restricted 
holonomy group H. Furthermore, this group is the group of isomorphisms 
of the fibre onto itself and hence is a sub-group of the structure group G. 
In other words, s spans a sub-group of the structure group. Since X, ~ 
can be generated from the coordinate system (x ~, 3j ~) with the use of the 
matrix representations of G, f2j z spans the adjoint representation of H. 
But H is only defined up to an automorphism so that f2j ~ also spans the 
restricted holonomy group. Once again this can be made more obvious in 
a coordinate representation. 

Since 7j i is a left-invariant form we can expend it in terms of the set of r 
linearly independent left-invariant 1-forms, ~P, that span H, i.e. 

7~ -i = a~j 7rP (3.14) 

where the a~p:, are matrices with constant elements. Putting this into equation 
(3.13) we find 

dTrP +a~j~PA t ,, apj aok 7r = f2j ~ (3.15) 

The left-invariant 1-forms 7r p are dual to a set of linearly independent vector 
fields Yp defined through the relation 

7r~ = 3p~ (3.16) 

In terms of local coordinates, this duality operation is defined by writing 

By using equation (3.12) together with equation (3.14) we have 

0 
Yo i k (3.17) = apk Xj a X /  

since these vector fields span the Lie algebra of H, we have 

[Yo, Yo] = C L  r~ (3.18) 

so that 
J ~ J ( 3 . 1 9 )  [apk, a,,~] = Cpo a~.k 

Thus the a~k span the Lie algebra of H. If we now combine equations (3.15) 
and (3.19) we find 

i ~" 1 ~" p a~j[d,r + ~ C ~  ~ A ,~~ = Sgj ~ (3.20) 

Let us now introduce a set of quantities, B ~, defined by 

. "  = d~r* + �89 7r' A 7r '~ (3.21) 

so that 
g 2 / =  a~j B" (3.22) 
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Since the apji form the basis of  the Lie algebra of  H, the ~ , i  and hence 
~q~.~, also span the same Lie algebra. 

In Section 4 we will show that the set of  quantities B * have a very simple 
analogue in field theories, namely, they are just the Yang-Mills fields, 
written as 2-forms. For example, in the particular case in which the restricted 
holonomy group is an Abelian group, only one field is necessary and B * 
can then be identified with the electromagnetic field tensor written as a 
differential form. 

Before establishing this connection with Yang-Mills fields, however, we 
wish to discuss a more general way of looking at connections and parallel 
displacements. In fact, we wish to consider these notions when generalised 
to the fibre bundle. We will see that we can introduce the notion of a 
horizontal lift which has a particularly simple meaning in the bundle and, 
in fact, can be identified with the generalised covariant derivatives that are 
introduced in the Yang-Mills theory. 

3.2. Connections, Parallel Displacement and Horizontal Lifts 

In Riemannian geometry parallel displacement is a method of relating 
tangent vectors at one point on a curve ~(s) with tangent vectors at another 
point on the same curve. In fibre bundle theory, the corresponding notion is 
essentially a connection of a point on different fibres that lie along a curve 
:/(s) in the base manifold M, i.e. a mapping of fibres onto fibres. In other 
words, the connection defines a curve in the bundle space which can be 
mapped onto ~,(s) in the base manifold. To make this notion clearer, we 
need to introduce a more general notion of connection which can be 
understood in the following way (see Bishop & Crittenden, 1964). 

At each point p on the bundle space P there is a set of tangent vectors, t 
(i.e. tangent to the bundle space). In fact, these tangent vectors can be 
divided into two classes, horizontal and vertical. The vertical vectors are 
the tangent vectors which take us from one point on a fibre to a neigh- 
bouring point on the same fibre. Hence, there is an isomorphism of the 
Lie algebra of  the structure group onto the vertical vectors. Formally the 
vertical vectors are those tangent vectors for which d~r( t )=0;  those 
tangent vectors for which d~r(t) # 0 are called horizontal. These horizontal 
vectors connect neighbouring points of  P in such a way that if one point is 
on one fibre, the neighbouring point is on a neighbouring fibre. Hence a 
set of  horizontal vectors establishes a connection in the bundle. Once again, 
formally, a connection is a d-dimensional distribution, H, spanned by the 
horizontal vectors such that H is differential and, for every p E P;  g e G, 
d r o l l  p = Hpo which means that the set of  horizontal vectors Hp at p are 
mapped onto the horizontal vectors Hpo atpg by means of a right translation 
dR o of G. 

The elements of  Hp have the property that when they are projected via 
dTr onto the base manifold they become the vector fields in the tangent 
space of the base manifold. This mapping is one-to-one and hence, to every 
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vector field on M, there corresponds a unique vector field 97 on P called the 
h o r i z o n t a l  l i f t  of X with the property that d~r97p = X~p~ for every p ~ P. 
It  can also be shown that d R  o 97 = 97 which means that the horizontal lift is 
invariant under the group G. Hence a connection can be described by a 
unique set of horizontal lifts which are invariant under G. 

I f  a connection is defined in the above sense, then it is always possible to 
describe this connection in P by defining a unique 1-form oJ on P. This 
form has values in the Lie algebra g of G such that to is dual to the 97 in the 
sense that to(97) = 0 if, and only if, 97 is horizontal. This 1-form to is the 
coordinate free description of the 1-form tok ~ introduced in equation (3.6). 
The form to is vertical. Any 1-form/9 is called vertical if/9(X) = 0, with X 
horizontal. Similarly any 1-form is called horizontal if/9(X) = 0 with X 
vertical. I t  is in this sense that the coordinate description of/9 u~ed in 
equation (3.8) was called horizontal. In terms of the coordinate-free 
description d = d o h where h picks out the horizontal part  of the vector 
field at p ~ P and d takes exterior derivative of it. Thus, since 0 is horizontal, 
choose t to be horizontal and choose a coordinate representation such that 

O(t) = 0' (3.23) 

then 
d0(t) = dO(ht  ) = dO(t)  = dO ~ (3.24) 

Let us now use the notion of a connection as described by the horizontal 
lifts to give a meaning to parallel displacement. Let ),(s), with 0 < s < 1, 
be a differential curve in the base space M along which we wish to establish 
the notion of parallel displacement. To do this we must lift y(s) onto the 
bundle space, P, so that, if for any point p0 ~ P with zr(p0) = ~(0), the lifted 
horizontal curve ?7(s) will give a unique point Ps in P with 7r(p~) = 9'(s) for 
all s in the interval [0,1 ]. 

I f  Po is varied along the fibre 7r-1(~,(0)), the corresponding lifted curve 
~7(s) will give a mapping, -r, of the fibre zr-l(y(0)) onto the fibre ~r-l(~(1)). 
We will call the mapping, ~-, the parallel displacement along the curve 
~(s). Thus every lifted horizontal curve ~7(s) will indicate how to relate the 
tangent vectors to M along the curve ~(s) in M. Since every lifted horizontal 
curve will be mapped into a lifted horizontal curve by R,, the parallel 
displacement along any curve commutes with the action of G on P, i.e. 
-r o Ro = R o o ~', g ~ G. 

The notion of a lifted curve corresponds, in fact, to the notion of the lift 
of a vector field. For if 97is the lift of  a vector field X on M, then the integral 
curve of 97through the pointp0 e P is a lift of the integral curve of Xthrough 
the point ~r(po). Thus a set of horizontal lifts describe parallel translation 
in the fibre bundle and is, in fact, a generalisation of the notion of a covariant 
derivative. 

If  we extend our discussion of parallel displacement to consider closed 
curves or loops in a region of the manifold M which is simply connected 
(i.e. all loops in the region are homotopic to zero), then we make contact 
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with the restricted holonomy group already referred to in the previous 
section. 

Finally, let us look at the form of the horizontal lifts in terms of a local 
coordinate description. If  we choose the coordinates (x  ~, 3j i) we can write 

zrP = Ok p dx  k (3.25) 

so that from equation (3.6), (3.12) and (3.7) we find 

~ = a t j  O~ p dx  k - 1-'~j dx  k (3.26) 

Our vector field X~ on the base manifold can also be written as X~ = O/Ox i. 
In terms of the local coordinates (x i, X~ ~) we have 

y ~  = Y f f ( d X m  ~ + at, , Ok ~ d x  k X,,") (3.27) 

The horizontal lift, )7, of the vector field X~ is obtained from 

~(.~) = 0 or ~J'()?k) = 0 (3.28) 

If  we write 
0 , l 0 

)Tk = ~ 7- Bkj ff~j~ (3.29) 

it is not difficult to show that from equation (3.5) and (3.6) we obtain 

B2j = - a t ,  0k p Xj" (3.30) 

so that equation (3.29) becomes 

~ 0 0 
Xk = ~ - a t ,  Ok p Xj"  OXj '  (3.31) 

I f  we now compare this with equation (3.17), we can finally write the 
horizontal lift as 

)~k = 0~xx k - 0k ~ Yo (3.32) 

where the Yp span the holonomy group H. 
In the next section we will briefly discuss the Yang-Mills theory and we 

will see that equation (3.32) can be identified with the generalised covariant 
derivative introduced in this theory. 

4. Yang-Mi l l s  Fields and Fibre Bundles  

We now wish to show the explicit connection between Yang-Mills fields 
and fibre bundle theory. Firstly, let us recall the basic physical notions 
behind the Yang-Mills theory by discussing the particular case of the 
proton-neutron system which can be regarded as different isospin states 
of the same particle, the nucleon. In the absence of an electromagnetic field 
the orientation of the 3-axis in isospace has no direct physical significance 
and it is a matter of convention as t~ which state is called the proton. 
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Provided only one point in space-time is considered, this convention can 
lead to no difficulties, but if two or more separate space-time points are 
considered, the relative orientation of the 3-axis at each point is not arbit- 
rary, i.e. we must have a consistent description at all points. This implies 
that we have a kind of non-locality to consider. However, since this is 
inconsistent with the notion of local field theories, Yang and Mills considered 
the possibility of introducing new fields in such a way as to make the theory 
invariant under independent rotations in isospace at every point in space- 
time. 

Let us now look at these physical ideas from the fibre bundle point of 
view. Consider the isospace as a fibre over each point of the space-time 
manifold. The 'rotations' in isospace which, in this case, are elements of the 
SU(2) group, map the fibre onto itself. The gauge groups, SU(2), can be 
regarded as the structure group with space-time as the base manifold. 
Thus there is a formal correspondence between the fibre bundle and the 
Yang-Mills theory (Lubkin, 1963; Herman, 1966). 

The Yang-Mills fields have been thought of as introducing an 'inter- 
action' between particles at different points in space-time. In fact, this was 
the way in which Ne'eman (1961) was led to postulate the existence of 
vector mesons with SU(3) properties. However, in terms of the basic 
notions that we are using, it is not meaningful to talk in terms of 'partMes 
in interaction'. In one sense we are closer to the Einstein notion that forces, 
or interactions, manifest themselves through some invariant features of a 
geometry; for example, relativity uses the curvature properties. This notion 
could be extended to the Yang-Mills case where 'interaction' is now des- 
cribed by the curvature properties of the bundle. However, this interpreta- 
tion suffers from one serious difficulty. Until now the structure group has 
been regarded as a pure gauge transformation in the sense that it does not 
arise from the properties of the base manifold (i.e. space-time) so that there 
is, at present, no connection between the internal properties and the 
external properties. This is a feature that we wish to avoid. 

Before discussing this point in detail let us first look further into the 
formal analogy between the fibre bundle and the Yang-Mills theory and 
show in what way the physical phenomena can be discussed in terms of the 
curvature properties of the bundle. The feature we will discuss is independent 
of whether the structure group is a pure gauge transformation or not. 

We have shown that the curvature properties of the bundle arise from a 
consideration of the parallel displacement of fibres along curves in a suitable 
base manifold. Parallel displacement is described by means of the horizontal 
lift and the curvature properties are directly related to the quantities B" 
(equation 3.21). These quantities should, therefore, have analogues in the 
Yang-Mills theory. They have in fact and to show this in detail, let us 
consider again the local coordinate description. The Yang-Mills formalism 
requires a Lagrangian L(~b, 0, ~b) which is to be invariant under the general 
gauge transformation 

~ exp [iYp ~ (x)l q~ (4.1) 
18 
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where Yp are a set of non-commuting operators that span the Lie algebra 
of the gauge group. This Lagrangian is made gauge invariant by introducing 
a compensating or Yang-Mills potential 0. p which is used to replace the 
partial derivative, 0,, by a gauge invariant derivative 

0 
V ,  Ox" O"P Yp (4.2) 

(see for example, Utiyama (1956), equation (1.10)). If we now compare this 
equation with (3.32), we see that it is identical with the horizontal lift of 
the vector fields X, = O/Ox". Thus the gauge invariant derivative is, in fact, 
a generalised covariant derivative in the bundle. 

If we form the commutator for V, we find 

[a0~" a o /  l r ,  ~a p a ~ _  ovo 0~)] r ,  =- 8"  
[Vv, V.]  = L a x .  a x  ~ - ~ p ~ v  . v .  . v  

(4.3) 

where we have used equation (3.18). We see that the B;,~ are the Yang-Mills 
fields derived from the potentials 0 j  (see Utiyama (1956) equation (1.18)). 
We can now write the Yang-Mills fields as a 2-form in the following manner 

B~= ~ B ~ d x "  A dx ~ (4.4) 
. < P  

This is just the expression (3.21), for if we write wP = O~Pdx ~ in equation 
(2.21) we can easily show that 

00J 0 0 j  ~r ~ c a p a ~ _ 0 o 0 .  ~) (4.5) 
B ~  Ox" Ox ~ - -~p~w.  ~ 

which establishes the formal connection between the Yang-Mills description 
and the fibre bundle approach. 

If  we adopt the more conventional view that field theory is to be regarded 
as the basic theory, then the connection between the fibre bundle and the 
Yang-Mills theory does not add any new physical content and is to be 
regarded as nothing more than a powerful mathematical tool with which 
to study the theory. However, we have already indicated the inadequacy 
of the field theoretic approach (Hiley, 1968; Bohm et al., 1970)and we are 
suggesting a different approach in which activity and movement are 
regarded as basic. These notions require new forms of description and we 
have suggested that the cellular (simplicial complex) description seems 
appropriate. In this theory, the phenomena and the apparatus are not to be 
regarded as disjoint entities in interaction, but are to be incorporated into 
a total structure in which analysis into parts is not relevant. Thus our theory 
will require a description of this structure. In the approximation that was 
introduced in Section 2, we replaced the overall cell structure by a frame 
bundle description, that is, the frame bundle is a natural description of the 
overall structure to this level of approximation and, therefore, we can 
begin to ask questions about this overall structure without having to 
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consider fields in a fundamental way. Thus, from our point of view, the fibre 
bundle approach can add new physical content to the theory. For example, 
in the next section we show how certain aspects of the overall structure 
are characterised by a set of 2-forms and their duals, together with a set of 
generalised currents. These forms enable us to make inferences about the 
structure of the underlying cell complex. 

5. Frame Bundles and Current Algebras 

In this section we wish to give a structural interpretation to the currents 
that arise in the Yang-Mills theory by considering how analogous quantities 
arise in fibre bundle theory. Firstly, let us recall how the electromagnetic 
field equations arise in the Yang-Mills theory. The appropriate gauge group 
is a one parameter Abelian group and, therefore, only one potential is 
needed, i.e. 0t," = A~ the usual four vector potential. Since C~o is zero for 
this group, equation (4.5) becomes 

OA~ OA~, (5.1) 
Bt, v = -Oxt~ Ox ~ 

so that B w is simply the electromagnetic field tensor. Hence from (4.4), the 
electromagnetic 2-form is 

f =  B~, dx" ^ dx ~ (5.2) 

while the potential vector is written as 

rr = A ,  dx" (5.3) 

Substituting equations (5.2) and (5.3) into (3.21) we get a pair of Maxwell's 
equations 

f =  dTr (5.4) 

or by taking the exterior derivative on both sides, we have 

d f  = 0 (5.5) 

The remaining pair of Maxwell's equations require the introduction of 
the dual 2-form *f(see Bohm et al., 1970) and this is related to the current 
via 

d * f  = j  (5.6) 

wherej is the current 3-formj = E~Or s j s  dx  ~ dxO dxL  By taking the exterior 
derivative of (5.6) we obtain the conservation of current equation 

dj  = 0 (5.7) 

Now in equation (3.22) we have shown that the B" are in fact related to 
the curvature forms g2j *. Furthermore, Maxwell's equations show that 
*B', and hence the dual curvature form *s also needed to specify the 
physically relevant features of the bundle. We therefore assume that when 
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the structure group is non-Abelian both B Y and *B Y (and hence Dj * and 
�9 Oj~) are again needed, but in this case d B ~  0 indicating that we are 
dealing with what is regarded, from the conventional point of view, as a 
non-linear effect. In analogy with the electromagnetic case, we define a 
generalised current, j T, by 

d*B ~ = j~  (5.8) 

Since the exterior derivative is nilpotent, the currents are conserved quanti- 
ties. 

We can now relate the currents to the dual curvature forms through 
equation (3.22). Since the a~  are constants we have 

d * s  a~ d*B ~ (5.9) 

From equation (5.8) we have 

- ' j ~  ( 5 . 1 0 )  d*~Qj - a~i 

Hence we have a current form 
j /  i .7 (5.11) = aT j  J 

with the currents Jj~ spanning the Lie algebra of the holonomy group which 
is a sub-group of the structure group. Thus we have a set of current com- 
mutation relations which arise naturally in the description we are using. 

One connection between currents and the holonomy group has already 
been pointed out by Lubkin (1963) and Loos (1964, 1966). However, their 
proposals differ from ours in several essential ways. They regard the Lie 
algebra spanned by the currents as arising from a pure gauge group; the 
corresponding holonomy group is then interpreted as describing the 
structure of an 'internal' space. The base manifold that they use is the 
space-time manifold which itself gives rise to a structure group describing 
the 'external' properties. This implies an artificial division between the 
'internal' and 'external' properties. To remove this division it is necessary 
to consider a larger structure from which these two aspects emerge. Un- 
fortunately, unification along these lines sooner or later leads to the 
difficulties pointed out by O'Raifeartaigh (1965). 

Our basic concepts, however, are different from the conventional ones 
and, as a consequence, the O'Raifeartaigh theorem is not applicable. 
Indeed, we hope to avoid the difficulties even in the approximation in 
which the cell structure is replaced by the frame bundle. Our base manifold 
is a phase space and we do not regard the structure group as a pure gauge 
transformation, but rather as induced naturally by allowable coordinate 
transformations in phase space itself. As space-time is already contained 
implicitly in phase-space, it is necessary for us to reduce (rather than to 
extend) the bundle structure in an appropriate way. 

We do not wish to discuss the precise nature of the possible structure 
groups that arise from allowable coordinate transformations in phase 
space in this paper. Clearly, they are related to the canonical transformations 
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in some way. However, unitary symmetry being a sub-group of the canonical 
transformations, cannot be explained without further assumptions of a 
physical nature. These assumptions will be discussed in a later paper. 

Our discussion of the frame bundle has made full use of differential 
forms. This feature is very important from our point of view as we can 
regard these forms as defining a de Rahm cohomology which has values in 
the reals, that is, our description uses the reals in an essential way. On the 
other hand, experiment suggests that it is the integers which play an impor- 
tant role (e.g. energy levels, integral charges, etc.) and hence in any alterna- 
tive to quantum theory, the integers must play a fundamental role. We 
have already suggested elsewhere (Hiley, 1968; Bohm et al., 1970) that one 
way to introduce this kind of discreteness is to consider cohomologies with 
values in the integers. In fact, we have demonstrated how it is possible to 
obtain a description of integral charges through a re-interpretation of 
Maxwell's electromagnetic theory. This was achieved by assuming that 
the de Rahm cohomology reflects a more basic cohomology which has 
values in the integers. More precisely, we propose that when the integral 
values in the basic cohomology are large, the de Rahm cohomology gives an 
adequate approximation to the basic discrete structure. In other words, we 
are suggesting a kind of correspondence principle which has features that 
are in some ways similar to the one introduced by Bohr. 

One can argue that as a result of the similarity of the two cohomologies, 
the various results obtained from the frame bundle can be given a discrete 
structural meaning. For example, one way would be to assume that the 
symmetry properties of the cells themselves are again described by the 
structure group which, in this case, is discrete. A form of holonomy group 
could then be used, but it seems inappropriate to regard it as describing 
curvature properties since curvature has no meaning in a discrete structure. 
Formally, the group arises from a consideration of how neighbouring cells 
fit together, that is, how they cohere. Thus we suggest that in this case the 
group describes the coherence properties of the cells and could, perhaps, 
more appropriately be called the coherence group. However, as the work 
of Schild (1949) shows, it may be inadequate to regard the symmetry 
properties and the coherence properties as being described by a group. 
Some more general notion will be needed and we are at present looking 
into various possibilities. However, even in the case that we have con- 
sidered, the generalised currents can still be given a discrete structural 
meaning in terms of the boundaries of structures described by coherence 
('curvature') forms (see, for example, Bohm et al., 1970). In the discrete 
case, the currents do not span a Lie algebra. It can be shown that a Lie 
algebra only emerges as a result of an approximation and hence, from our 
point of view, the Lie algebra description is to be regarded as an approxima- 
tion. It is not dear  at this stage whether, as a result of this, the discrete case 
will contain features similar to those used in 'broken' symmetries. However, 
what is clear is that in our description the charges associated with the 
currents will be discrete and this is precisely what is required by experiment. 
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6. Conclusion 

We have continued to investigate some aspects of a new theory suggested 
in a previous paper (Bohm et al., 1970). There we questioned the basic 
concepts of conventional theories and argued that radical changes may 
be needed to give a clearer understanding of quantum phenomena. To 
discuss these new concepts new mathematical descriptions are needed 
and we suggested that they should be based on a cellular structure rather 
than the continuum. In this paper we have pointed out that the bilocal 
structure of Yukawa and its extension by Takabayasi can be considered as 
imposing a cellular structure in space-time. As yet there is no evidence for 
such a structure in space-time itself, but quantum theory indicates that 
there is a cellular structure in phase space, and we have discussed some of 
the implications of such a structure. We have then shown that some aspects 
o f  this cell structure can be described approximately by the mathematical 
theory of fibre bundles, in particular, the frame bundle. This bundle is 
shown to contain features which already appear in the Yang-Mills theory 
even though the two approaches start from very different standpoints. By 
a comparison of these two approaches, we are able to give a new meaning 
to gauge transformations. They are no longer associated with the arbitrari- 
ness of the phase of the wave-function, but directly related to the symmetry 
properties of the basic cells in the description. In turn, these symmetry 
properties are intimately related to the overall experimental conditions, 
indicating that the bundle description contains a kind of wholeness suggested 
by quantum theory. 

Although we show the similarity between the fibre bundle and Yang- 
Mills theory, we do not regard the quantities 0u ~ as giving rise to 'inter- 
actions'. In our theory we do not have separately existing systems except in 
some suitable approximation. The phenomena arise from the whole 
movement and the structure is the phenomena. In other words, the inter- 
action is incorporated in the structure in a way that is, in principle, similar 
to general relativity. We suggest that this type of approach is needed in 
high energy physics because in some cases the interactions are so strong 
that it is impossible, even in principle, to talk of two separately existing 
systems in interaction. 

To describe the overall structure of the bundle, we need a curvature form 
and its dual, together with a set of conserved currents which span the Lie 
algebra of the holonomy group. Thus the description of  the structure 
naturally requires a set of current commutation relations. We do not discuss 
which Lie group arises naturally in our structure in this paper, but we will 
show what additional assumptions are required to make contact with 
unitary symmetry elsewhere. 

If, instead of using the approximate fibre bundle description, we make 
full use of the cellular description by assuming the structure to be an 
abstract simplicial complex, many of the relations can be given a meaning 
in the manner discussed in Bohm et al. (1970). Although there are points 
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which require  clarification, we find that  it  is still possible  to in t roduce  
currents,  bu t  in this case they will no longer  span a Lie a lgebra  except in 
some limit. Thus,  in our  view, a descr ipt ion using Lie a lgebras  is only an 
app rox ima t ion  to a more  fundamenta l  theory  having discreteness as an 
essential  feature. 
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